38 research outputs found

    Rheology of high-aspect-ratio nanocarbons dispersed in a low-viscosity fluid

    Get PDF
    Printing inks typically consist of a functional component dispersed within a low-viscosity resin/solvent system where interparticle interactions would be expected to play a significant role in dispersion, especially for the high-aspect-ratio nanocarbons such as the graphite nanoplatelets (GNPs). Rheology has been suggested as a method for assessing the dispersion of carbon nanomaterials in a fluid. The effects of phase volume of ammonia plasma-functionalized GNPs on a near-Newtonian low-viscosity thermoplastic polyurethane (TPU) resin system have been studied using shear and quiescent oscillatory rheology. At low concentrations, the GNPs were well dispersed with a similar shear profile and viscoelastic behavior to the unfilled TPU resin, as viscous behavior prevailed indicating the absence of any long-range order within the fluid. Particle interactions increased rapidly as the phase volume tended toward maximum packing fraction, producing rapid increases in the relative viscosity, increased low shear rate shear thinning, and the elastic response becoming increasingly frequency independent. The nanoscale dimensions and high-aspect-ratio GNPs occupied a large volume within the flow, while small interparticle distances caused rapid increases in the particle–particle interactions to form flocculates that pack less effectively. Established rheological models were fitted to the experimental data to model the effect of high-aspect-ratio nanocarbon on the viscosity of a low-viscosity system. Using the intrinsic viscosity and the maximum packing fraction as fitting parameters, the Krieger–Dougherty (K–D) model provided the best fit with values. There was good agreement between the estimates of aspect ratio from the SEM images and the predictions of the aspect ratio from the rheological models. The fitting of the K–D model to measured viscosities at various phase volumes could be an effective method in characterizing the shape and dispersion of high-aspect-ratio nanocarbons

    The effect of plasma functionalization on the print performance and time stability of graphite nanoplatelet electrically conducting inks

    Get PDF
    Carbon-based pastes and inks are used extensively in a wide range of printed electronics because of their widespread availability, electrical conductivity and low cost. Overcoming the inherent tendency of the nano-carbon to agglomerate to form a stable dispersion is necessary if these inks are to be taken from the lab scale to industrial production. Plasma functionalization of graphite nanoplatelets (GNP) adds functional groups to their surface to improve their interaction with the polymer resin. This offers an attractive method to overcome these problems when creating next generation inks. Both dynamic and oscillatory rheology were used to evaluate the stability of inks made with different loadings of functionalized and unfunctionalized GNP in a thin resin, typical of a production ink. The rheology and the printability tests showed the same level of dispersion and electrical performance had been achieved with both functionalized and unfunctionalized GNPs. The unfunctionalized GNPs agglomerate to form larger, lower aspect particles, reducing interparticle interactions and particle–medium interactions. Over a 12-week period, the viscosity, shear thinning behavior and viscoelastic properties of the unfunctionalized GNP inks fell, with decreases in viscosity at 1.17 s−1 of 24, 30, 39% for the ϕ = 0.071, 0.098, 0.127 GNP suspensions, respectively. However, the rheological properties of the functionalized GNP suspensions remained stable as the GNPs interacted better with the polymer in the resin to create a steric barrier which prevented the GNPs from approaching close enough for van der Waals forces to be effective

    Stretchable Carbon and Silver Inks for Wearable Applications

    Get PDF
    For wearable electronic devices to be fully integrated into garments, without restricting or impeding movement, requires flexible and stretchable inks and coatings, which must have consistent performance and recover from mechanical strain. Combining Carbon Black (CB) and ammonia plasma functionalized Graphite Nanoplatelets (GNPs) in a Thermoplastic Polyurethane (TPU) resin created a conductive ink that could stretch to substrate failure (>300% nominal strain) and cyclic strains of up to 100% while maintaining an electrical network. This highly stretchable, conductive screen-printable ink was developed using relatively low-cost carbon materials and scalable processes making it a candidate for future wearable developments. The electromechanical performance of the carbon ink for wearable technology is compared to a screen-printable silver as a control. After initial plastic deformation and the alignment of the nano carbons in the matrix, the electrical performance was consistent under cycling to 100% nominal strain. Although the GNP flakes are pulled further apart a consistent, but less conductive path remains through the CB/TPU matrix. In contrast to the nano carbon ink, a more conductive ink made using silver flakes lost conductivity at 166% nominal strain falling short of the substrate failure strain. This was attributed to the failure of direct contact between the silver flakes

    Printed Nanocarbon Heaters for Stretchable Sport and Leisure Garments

    Get PDF
    The ability to maintain body temperature has been shown to bring about improvementsin sporting performance. However, current solutions are limited with regards to flexibility, heatinguniformity and robustness. An innovative screen-printed Nanocarbon heater is demonstrated whichis robust to bending, folding, tensile extensions of up to 20% and machine washing. This combinationof ink and substrate enables the heated garments to safely flex without impeding the wearer. It iscapable of producing uniform heating over a 15 × 4 cm area using a conductive ink based on a blendof Graphite Nanoplatelets and Carbon Black. This can be attributed to the low roughness of theconductive carbon coating, the uniform distribution and good interconnection of the carbon particles.The heaters have a low thermal inertia, producing a rapid temperature response at low voltages,reaching equilibrium temperatures within 120 s of being switched on. The heaters reached the 40 ◦Crequired for wearable heating applications within 20 s at 12 Volts. Screen printing was demonstratedto be an effective method of controlling the printed layer thickness with good interlayer adhesionand contact for multiple printed layers. This can be used to regulate their electrical properties andhence adjust the heater performance

    Commercially available pressure sensors for sport and health applications: A comparative review

    Get PDF
    Pressure measurement systems have numerous applications in healthcare and sport. The purpose of this review is to: (a) describe the brief history of the development of pressure sensors for clinical and sport applications, (b) discuss the design requirements for pressure measurement systems for different applications, (c) critique the suitability, reliability, and validity of commercial pressure measurement systems, and (d) suggest future directions for the development of pressure measurements systems in this area. Commercial pressure measurement systems generally use capacitive or resistive sensors, and typically capacitive sensors have been reported to be more valid and reliable than resistive sensors for prolonged use. It is important to acknowledge, however, that the selection of sensors is contingent upon the specific application requirements. Recent improvements in sensor and wireless technology and computational power have resulted in systems that have higher sensor density and sampling frequency with improved usability – thinner, lighter platforms, some of which are wireless, and reduced the obtrusiveness of in-shoe systems due to wireless data transmission and smaller data-logger and control units. Future developments of pressure sensors should focus on the design of systems that can measure or accurately predict shear stresses in conjunction with pressure, as it is thought the combination of both contributes to the development of pressure ulcers and diabetic plantar ulcers. The focus for the development of in-shoe pressure measurement systems is to minimise any potential interference to the patient or athlete, and to reduce power consumption of the wireless systems to improve the battery life, so these systems can be used to monitor daily activity. A potential solution to reduce the obtrusiveness of in-shoe systems include thin flexible pressure sensors which can be incorporated into socks. Although some experimental systems are available further work is needed to improve their validity and reliability

    Passivation capability of carbon black layers for screen-printed battery applications with Ag current collectors

    Get PDF
    Screen-printed thin-film batteries comprise current collectors typically realised with commercially available conductive silver inks primarily designed for non-critical printed electronics applications. The avoidance of electrochemical interaction of metallic silver with the respective battery chemistry requires printing of an additional passivation layer. The wide range of printing inks available makes it difficult for researchers to select and qualify battery specific inks that ensure a long-life cycle without limitation of relevant battery performance parameters. This study presents a novel method to quantify the passivation capability of carbon black passivation layers for silver current collectors in 6.0 M potassium hydroxide and 5.8 M zinc chloride aqueous electrolyte solutions. Cyclic voltammetry is used to determine possible electrochemical interaction of passivated current collectors with the electrolyte media which constitute battery performance degrading parasitic side reactions. An innovative approach based on Faraday’s law of electrolysis is presented to transform cyclic voltammogram curve progressions into comparable numerical values. The mathematical approach allows quantitative comparison of individually fabricated passivation layers with respect to their passivation capability instead of interpreting a large number of cyclic voltammograms

    Influence of calcium carbonate on polyamide 12 regarding melting, formability and crystallization properties

    Get PDF
    Controlling and adjusting the thermal properties of a compound to improve the additive manufacturing process of a polymer matrix through selective laser sintering is of key importance to achieve an optimized final part density as well as hardness. In the past, the purpose of adding mineral fillers to polymers was primarily one of cost reduction. Today, however, fillers are more often used to fulfil a functional role, such as improved thermal or mechanical properties of the polymer composite [1]. In this study, the influence of calcium carbonate as a mineral filler particle on the thermal properties in compression-molded polyamide 12 was investigated. The particle size distribution and the filler amount within the polyamide 12 matrix were varied. The melt viscosity at 190 °C, the melting speed, melting and crystallization point as well as crystallization time at 170 and 172 °C were analyzed. A relationship between these properties and the implementation of a specific amount of calcium carbonate with a certain particle size distribution was observed. The study concludes, that the thermal and flow properties of a polyamide 12 matrix can potentially be manipulated to improve a laser thermal sintering process insofar as the layer melt can be optimized as well as the crystallization process speeded up

    Comparison of the antibacterial activity of essential oils and extracts of medicinal and culinary herbs to investigate potential new treatments for irritable bowel syndrome

    Get PDF
    BACKGROUND:Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder, which may result from alteration of the gastrointestinal microbiota following gastrointestinal infection, or with intestinal dysbiosis or small intestinal bacterial overgrowth. This may be treated with antibiotics, but there is concern that widespread antibiotic use might lead to antibiotic resistance. Some herbal medicines have been shown to be beneficial, but their mechanism(s) of action remain incompletely understood. To try to understand whether antibacterial properties might be involved in the efficacy of these herbal medicines, and to investigate potential new treatments for IBS, we have conducted a preliminary study in vitro to compare the antibacterial activity of the essential oils of culinary and medicinal herbs against the bacterium, Esherichia coli.METHODS:Essential oils were tested for their ability to inhibit E. coli growth in disc diffusion assays and in liquid culture, and to kill E. coli in a zone of clearance assay. Extracts of coriander, lemon balm and spearmint leaves were tested for their antibacterial activity in the disc diffusion assay. Disc diffusion and zone of clearance assays were analysed by two-tailed t tests whereas ANOVA was performed for the turbidometric assays.RESULTS:Most of the oils exhibited antibacterial activity in all three assays, however peppermint, lemon balm and coriander seed oils were most potent, with peppermint and coriander seed oils being more potent than the antibiotic rifaximin in the disc diffusion assay. The compounds present in these oils were identified by gas chromatography mass spectrometry. Finally, extracts were made of spearmint, lemon balm and coriander leaves with various solvents and these were tested for their antibacterial activity against E. coli in the disc diffusion assay. In each case, extracts made with ethanol and methanol exhibited potent antibacterial activity.CONCLUSIONS:Many of the essential oils had antibacterial activity in the three assays, suggesting that they would be good candidates for testing in clinical trials. The observed antibacterial activity of ethanolic extracts of coriander, lemon balm and spearmint leaves suggests a mechanistic explanation for the efficacy of a mixture of coriander, lemon balm and mint extracts against IBS in a published clinical trial

    Three-Dimensional–Printed Laboratory-on-a-Chip With Microelectronics and Silicon Integration

    Get PDF
    In this research, an integrated three-dimensional (3D)–printed laboratory-on-a-chip system was developed based on integrating conventional silicon biosensing systems with silver screen–printed electronics. It was discovered that by integrating 220-μm width microchannels, fabricated using 3D-printed polymers, it would offer a means for the development of a microfluidic device with the further possibility for electrically integrating different elements through depositing screen-printed silver contacts. The objective was to achieve low resistance and high reliability with low cost for manufacturing 3D-printed point-of-care diagnostic devices

    Influence of the Surface Modification of Calcium Carbonate on Polyamide 12 Composites

    Get PDF
    In previous investigations, it was found that the thermal properties of a polyamide 12 compound can be manipulated, using a designed filler, to improve the melting as well as crystallization behavior, determined for selective laser sintering. A common downside of the introduction of a non-flexing mineral filler is the reduction of the mechanical properties, such as ductility. This paper investigates the influence of content and surface modification of limestone on the mechanical properties. The aim is to understand the effect of an optimized coupling agent on the properties of a compound, containing polyamide 12 filled with 10 wt % of surface modified calcium carbonate. A range of four mineral filler modifications was chosen to investigate their coupling effect, namely 6-amino hexanoic acid, ε-caprolactam, l-arginine or glutamic acid. The in advance surface modified fillers were then each used in combination with the polyamide 12 in a twin-screw extrusion process. With an optimized surface modifying agent, the tensile strength as well as elongation at break can be improved in comparison with uncoated filler implementation, such that up to 60% of the loss of ductility and toughness of a final part when using an untreated filler could be regained using an optimized surface modifier at a correct amount. With the tested filler grade and the specific tested filler amount, the optimized amount of 6-amino hexanoic acid was approx. 2.5 mmol of treatment agent per 100 m2 of CaCO3. These found improvements in a twin-screw extruded polyamide 12 compound show the possible usage of modified calcium carbonate as a functional filler in additive manufacturing and can potentially be transferred in a subsequent investigation in the selective laser sintering process
    corecore